A deep neural network classifier for P300 BCI speller based on Cohen’s class time-frequency distribution

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Clustering Approach for P300 based BCI Speller Systems

The paper presents a k-means based semi-supervised clustering approach for recognizing and classifying P300 signals for BCI Speller System. P300 signals are proved to be the most suitable Event Related Potential (ERP) signal, used to develop the BCI systems. Due to non-stationary nature of ERP signals, the wavelet transform is the best analysis tool for extracting informative features from P300...

متن کامل

Deep Recurrent Convolutional Neural Networks for Classifying P300 Bci Signals

We develop and test three deep-learning recurrent convolutional architectures for learning to recognize single trial EEG event related potentials for P300 brain-computer interfaces (BCI)s. One advantage of the neural network solution is that it provides a natural way to share a lower-level feature space between subjects while adapting the classifier that works on that feature space. We compare ...

متن کامل

Self-training Algorithm for Channel Selection in P300-Based BCI Speller

In this paper, we address the important problem of channel selection for a P300-based brain computer interface (BCI) speller system in the situation of insufficient training data with labels. An iterative semi-supervised support vector machine (SVM) is proposed for time segment selection as well as classification, in which both labeled training data and unlabeled test data are utilized. The per...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals

BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES

سال: 2021

ISSN: 1303-6203

DOI: 10.3906/elk-2005-201